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Abstract

This paper presents a new geometrical design method of multi-degree-of-freedom (mdof) dynamic vibration absorbers

that reduce multiple modes of vibration. The design of an mdof vibration absorber involves, in general, the complexity of

the equations and large numbers of design variables. For this reason, previous researches mainly focused on finding

optimized stiffness and damping values that minimize the vibration responses. In this paper, we introduce a simple

geometrical design method in which the sets of three mutually orthogonal line springs are used to first simplify the stiffness

matrix. The dynamic equations of a main body and an absorber are then decoupled to obtain the geometric design rules for

an mdof absorber. Numerical examples are used to illustrate the new design method.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

A typical dynamic vibration absorber has a single degree-of-freedom (dof). It has a tuned spring and mass
arranged in the direction of the excitation force. However, many practical vibration systems are regarded as
mdof vibration systems that have multiple vibration modes and resonant frequencies. In order to deal with
multiple vibration modes, some research works have been focused on the use of a single vibration absorber or
a set of single dof vibration absorbers. Vakakis and Paipetis [1] investigated the effect of a single dof vibration
absorber mounted on an mdof system. Sadek [2] estimated the optimal stiffness and damping constants of
multiple single dof vibration absorbers attached to an mdof system. A single rigid body suspended by springs
has 6dof in space. This implies that a single rigid body can be used as a 6dof vibration absorber. In light of this
nature, Zuo and Nayfeh [3] showed a single body vibration absorber, which can diminish multiple vibration
modes. They regarded this as an optimization problem solving for optimal spring and damping constants set
up in the estimated positions and directions.

The design of an mdof vibration absorber using a single body can be greatly simplified when an adequate
geometrical approach to the design is taken. To make use of every dof of the vibration absorber, the dynamic
equation of the vibration absorber is completely decoupled. By describing stiffness matrix and mass matrix via
screw theory [4], one can easily obtain decoupling conditions of the dynamic equation. From the decoupled
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Nomenclature

ai, bi, ci Cartesian coordinates of pi

cd damping constant
c̄r modal damping of rth mode
C mass center of rigid body
C̄ proportional damping matrix
d position vector from mass center of body

2 (absorber) to mass center of body 1
E parallel axis congruent transformation

matrix
Ixx, Iyy, Izz mass moment of inertias with respect

to x-, y-, z-axis
k spring constant
k̄r modal stiffness of rth mode
Ki ith diagonal element of diagonalized

stiffness matrix
K stiffness matrix
K̄ global stiffness matrix
m mass
m̄r modal mass of rth mode
M mass matrix

M̄ global mass matrix
pi position vector from origin to the coin-

cident point of ith orthogonal three-
spring set

ŵ externally applied wrench
X̂ small twist
b proportional percent damping ratio
d translational displacement
f rotational displacement
Ui

j jth mode vector of ith body
W modal matrix
o excitation frequency
O natural frequency
Oi ith suppression frequency

Subscripts

1 rigid body 1
2 rigid body 2 (absorber)
C1 mass center of rigid body 1
C2 mass center of rigid body 2
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dynamic equation, six stiffness and mass ratios for each direction can be determined. They can be used as six
suppression frequencies of an mdof vibration absorber. When the dynamic equation of a rigid body is
completely decoupled and it is used as an mdof vibration absorber, it reduces multiple modes under some
working conditions.

In summary, this paper presents a new geometric design method of mdof vibration absorbers in which the
geometrical conditions that decouple the dynamic equation of an mdof vibration absorber are derived and
thereby the new design rules for an mdof vibration absorber are suggested. Numerical examples are presented
for both spatial and planar design cases.

2. Preliminary

2.1. Stiffness matrix

Consider a rigid body which is supported by n line springs acting only along their axial directions. When a
small wrench ŵ is externally applied on the rigid body, the relation between the wrench and the small twist X̂
of a body can be expressed by

ŵ ¼ KX̂, (1)

where ŵ ¼ fT mT
� �T

are the Plücker’s ray coordinates of the wrench and X̂ ¼ dT /T
h iT

are the Plücker’s
axis coordinates of the twist. The vectors f and m are, respectively, the force and the moment. The vectors d
and u are, respectively, the translational and the rotational displacements. For small oscillations of a body, the
stiffness matrix in Eq. (1) can be expressed as [5]

K ¼ j k½ �jT, (2)

where j is the 6� n Jacobian matrix expressed in the form j ¼ ŝ1; . . . ; ŝn½ � and ŝi is the line vector of the ith line
spring. [k] is the diagonal matrix whose diagonal elements are the spring constants ki(i ¼ 1,y,n). The line
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vector ŝi is expressed in the Plücker’s ray coordinates as

ŝi ¼
si

sOi

" #
¼

si

ri � si

" #
, (3)

where the vectors si and ri ¼ xi yi zi

h iT
denote, respectively, the unit direction vector of the line and the

position vector from the origin to the line. Now, substituting Eq. (3) into Eq. (2) yields

K ¼
Xn

i¼1

ki

sis
T
i �sis

T
i Ri

Risis
T
i �Risis

T
i Ri

" #
; (4)

where

Ri ¼ ri� ¼

0 �zi yi

zi 0 �xi

�yi xi 0

2
64

3
75.
2.2. Stiffness matrix for orthogonal three-springs

We consider a single rigid body supported by n sets of three line springs which are orthogonal each other
and coincident at a point as shown in Fig. 1. Further, the line springs are assumed to be parallel to the axes of
the coordinate system. In this case, the stiffness matrix Ki of the ith set of three line springs becomes
significantly simplified and can be given by

Ki ¼

1 0 0

0 1 0

0 0 1

0 �ci bi

ci 0 �ai

�bi ai 0

2
666666666664

3
777777777775

kx 0 0

0 ky 0

0 0 kz

2
664

3
775

1 0 0 0 ci �b

0 1 0 �ci 0 ai

0 0 1 bi �ai 0

2
664

3
775

¼

kx 0 0 0 cikx �bikx

ky 0 �ciky 0 aiky

kz bikz �aikz 0

bið Þ
2kz þ cið Þ

2ky �aibikz �aiciky

ðsymmetricalÞ aið Þ
2kz þ cið Þ

2kx �bicikx

aið Þ
2ky þ bið Þ

2kx

2
6666666666664

3
7777777777775
, ð5Þ

where the vector pi ¼ ai bi ci

� �T
denotes the position vector from the mass center C of a body to the

coincident point of the springs. The constants kx, ky, and kz are the common stiffness constants for all x-, y-,
and z-directional spring, respectively. Such a spring system that the consisting three springs are mutually
orthogonal and coincident at one point may be referred to here as the orthogonal three-springs (OTS). From a
practical point of view, many elastically supporting mechanical components such as engine mounting
materials can be modeled as the sets of OTS.
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Fig. 1. A set of orthogonal three-springs (OTS).
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When a rigid body is supported by n sets of OTS, the total stiffness matrix can be expressed as

K ¼
X

i

Ki

¼

nkx 0 0 0 kx

P
i

ci �kx

P
i

bi

nky 0 �ky

P
i

ci 0 ky

P
i

ai

nkz kz

P
i

bi �kz

P
i

ai 0

kz

P
i

bið Þ
2
þ ky

P
i

cið Þ
2

�kz

P
i

aibi �ky

P
i

aici

ðsymmetricalÞ kz

P
i

aið Þ
2
þ kx

P
i

cið Þ
2

�kx

P
i

bici

ky

P
i

aið Þ
2
þ kx

P
i

bið Þ
2

2
66666666666666666664

3
77777777777777777775

.

ð6Þ

Observation of the above stiffness matrix reveals that it can be diagonalized when the position vectors to the
coincident points satisfy the following conditions:X

i

ai ¼ 0;
X

i

bi ¼ 0;
X

i

ci ¼ 0, (7)

X
i

aibi ¼ 0;
X

i

bici ¼ 0;
X

i

aici ¼ 0. (8)

These conditions for diagonalization are always satisfied when the position vectors are arranged
symmetrically with respect to each of the coordinate axes. When the conditions given by Eqs. (7) and (8)
are satisfied, Eq. (6) becomes

K ¼ diag K1 K2 K3 K4 K5 K6

� �
, (9)

where

K1 ¼ nkx; K2 ¼ nky; K3 ¼ nkz; K4 ¼ kz

X
i

ðbiÞ
2
þ ky

X
i

ðciÞ
2,

K5 ¼ kz

X
i

ðaiÞ
2
þ kx

X
i

ðciÞ
2; K6 ¼ ky

X
i

ðaiÞ
2
þ kx

X
i

ðbiÞ
2.

If all the position vectors pi’s are arranged on a single coordinate axis, one or two Ki(i ¼ 4, 5, 6) values
become zeros and the stiffness matrix K becomes singular.
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3. Design of mdof vibration absorber

3.1. Decoupled dynamic equation of a rigid body

For an elastically supported single rigid body, the equation of motion for free vibration can be expressed at
C by

M €Xþ KX ¼ 0, (10)

where M is the 6� 6 mass matrix. The small twist representing a general harmonic displacement in a three-
dimensional space can be expressed by

X ¼ X̂ejOt, (11)

where

X̂ ¼ dx dy dz fx fy fz

h iT
(12)

and O denotes the natural frequency of the system. When the axes of the coordinate frames are chosen to be
coincident with the principal axes of inertia, the mass matrix can be expressed by a diagonal matrix

M ¼ diag m m m Ixx Iyy Izz

� �
. (13)

Substituting Eq. (11) into Eq. (10) yields

ðK� O2MÞX̂ ¼ 0. (14)

When the coordinate axes are coincident with respective principal axes of inertia and the body is supported
by n sets of OTS that satisfy the conditions given by Eqs. (7) and (8), the dynamic equation of a rigid body is
completely decoupled. Expanding Eq. (14) gives the following 6 independent equations:

K1

m
� O2

� 	
dx ¼ 0;

K2

m
� O2

� 	
dy ¼ 0;

K3

m
� O2

� 	
dz ¼ 0,

K4

Ixx

� O2

� 	
fx ¼ 0;

K5

Iyy

� O2

� 	
fy ¼ 0;

K6

Izz

� O2

� 	
fz ¼ 0. ð15Þ

From Eq. (15), the six frequencies are determined by the square root ratios of stiffness to mass or inertia for
each direction:

O1 ¼

ffiffiffiffiffiffi
K1

m

r
; O2 ¼

ffiffiffiffiffiffi
K2

m

r
; O3 ¼

ffiffiffiffiffiffi
K3

m

r
,

O4 ¼

ffiffiffiffiffiffiffi
K4

Ixx

r
; O5 ¼

ffiffiffiffiffiffi
K5

Iyy

s
; O6 ¼

ffiffiffiffiffiffi
K6

Izz

r
. ð16Þ

In the next section, these frequencies are used as the suppression frequencies of an mdof vibration absorber
which can be adjusted by changing stiffness constants, configuration of spring sets, or mass properties.

3.2. Working conditions of mdof vibration absorber

Consider the system shown in Fig. 2 where body 1 is excited by an external wrench w(t) and body 2 is
connected in series to body 1 by in-parallel linear springs. It is assumed that the origin of the coordinates
frame is placed at the mass center C1 of body 1. For small displacements of the bodies, the equations of
motions can be expressed by

M1
€X1 þ K1X1 þ K2ðX1 � X2Þ ¼ wðtÞ, (17a)

M2
€X2 þ K2 X2 � X1ð Þ ¼ 0. (17b)



ARTICLE IN PRESS

Fig. 2. Two-body system.
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On the assumption that forced harmonic vibration takes place, the harmonic excitation force can be
expressed as

w tð Þ ¼ ŵejot, (18)

where ŵ ¼ ½ f x f y f z mx my mz �T is the time-independent applied wrench and o is the excitation
frequency. The small twist representing a general harmonic displacement can be expressed by

X ¼ X̂ejot. (19)

Substituting Eqs. (18) and (19) into Eq. (17) yields

K1X̂1 þ K2 X̂1 � X̂2

� �
� o2M1X̂1 ¼ ŵ, (20a)

K2 X̂2 � X̂1

� �
� o2M2X̂2 ¼ 0. (20b)

Eliminating X̂2 from Eqs. (20a) and (20b) gives

K1 þ K2 � K2 K2 � o2M2

� ��1
K2 � o2M1

n o
X̂1 ¼ ŵ. (21)

Using the parallel axis congruence transformation from the mass center C2 of body 2 to C1, the matrices K2

and M2 written at C1 in Eq. (21) can be expressed in terms of K2C2
and M2C2

at C2 as

K2 ¼ ET
C2C1

K2C2
EC2C1

and M2 ¼ ET
C2C1

M2C2
EC2C1

, (22)

where EC2C1
¼

I3 d�

03 I3

" #
and d � C2C1

���!
¼ dx dy dz

h iT
. Substituting Eq. (22) into Eq. (21) yields

K1 � ET
C2C1

HEC2C1
� o2M1

� �
X̂1 ¼ ŵ, (23)

where

H ¼ K2C2
K2C2
� o2M2C2

� ��1
K2C2
� K2C2

. (24)

When the body 2 is supported by a number of sets of OTS and dynamically decoupled, H can be expressed
in the form of a diagonal matrix

H ¼
1

D
diag K1D1 K2D2 K3D3 K4D4 K5D5 K6D6

� �
�

1

D
~H, (25)
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where

D ¼
Y6
i¼1

O2
i � o2

o2

and

Dj ¼
Y6
i¼1
iaj

O
O2

i � o2

o2
.

Substituting Eq. (25) into Eq. (23) yields

K1 �
1

D
ET

C2C1

~H EC2C1
� o2M1

� 	
X̂1 ¼ ŵ. (26)

When the excitation frequency o gets closer to any one of Oi, D approaches zero and Eq. (26) can be
rewritten as greatly simplified form

ET
C2C1

~H EC2C1
X̂1 ¼ 0. (27)

The fully expanded form of Eq. (27) may be given by

K1D1 0 0 0 �K1D1dz K1D1dy

K2D2 0 K2D2dz 0 �K2D2dx

K3D3 �K3D3dy K3D3dx 0

K4D4 þ K3D3d2
y

þK2D2d
2
z

�K3D3dxdy �K2D2dxdz

ðsymmetricalÞ
K5D5 þ K3D3d

2
x

þK1D1d2
z

�K1D1dydz

K6D6 þ K2D2d2
x

þK1D1d
2
y

2
66666666666666666664

3
77777777777777777775

dx

dy

dz

fx

fy

fz

2
6666666664

3
7777777775
1

¼ 0. (28)

Now, at o ¼ Oi(i ¼ 1,y,6), expanding the ith row of Eq. (28) gives the following relations:

dx � dzfy þ dyfz ¼ 0 at o ¼ O1, (29a)

dy þ dzfx � dxfz ¼ 0 at o ¼ O2, (29b)

dz � dyfx þ dxfy ¼ 0 at o ¼ O3, (29c)

fx ¼ 0 at o ¼ O4, (29d)

fy ¼ 0 at o ¼ O5, (29e)

fz ¼ 0 at o ¼ O6. (29f)

From Eqs. (29d) to (29f), it is clear that when the excitation frequency o approaches any one of O4, O5, or
O6, the corresponding rotational displacement fx, fy, or fz vanishes. This implies that the rigid body 2 can be
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Table 1

Design rules for MDOF vibration absorber

d ¼ C2C1

���!� �
Frequency condition(s) for Design rule

dx ¼ 0 (A)a dy ¼ 0 (B)a dz ¼ 0 (C)a \

— O1 ¼ O5 ¼ O6 O2 ¼ O4 ¼ O6 O3 ¼ O4 ¼ O5 N

dx ¼ 0 O1 ¼ O5 ¼ O6 O2 ¼ O4 O3 ¼ O4 DX

dy ¼ 0 O1 ¼ O5 O2 ¼ O4 ¼ O6 O3 ¼ O5 DY

dz ¼ 0 O1 ¼ O6 O2 ¼ O6 O3 ¼ O4 ¼ O5 DZ

dx ¼ dy ¼ 0 O1 ¼ O5 O2 ¼ O4 — DXY

dy ¼ dz ¼ 0 — O2 ¼ O6 O3 ¼ O5 DYZ

dx ¼ dz ¼ 0 O1 ¼ O6 — O3 ¼ O4 DXZ

dx ¼ dy ¼ dz ¼ 0 — — — DXYZ

aThe symbols used for classification of design rules.
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utilized as an mdof vibration absorber. If, for example, two rotational displacements fx and fy are to be
eliminated at o, then both O4 and O5 have to be made equal to o using Eq. (16).

On the other hand, when o approaches any one of O2, O2, or O3, the corresponding translational
displacement dx, dy, or dz does not simply vanish. From Eqs. (29a) to (29c), there may be various design
choices of elimination. For example, If dx is to be eliminated at o, then, firstly, O1 has to be made equal to o
using Eq. (16) so that Eq. (29a) can be used. Now, from Eq. (29a), dx can be eliminated by one of the following
conditions: (1) fy ¼ fz ¼ 0, (2) dy ¼ dz ¼ 0, (3) dz ¼ fz ¼ 0, or (4) fy ¼ dy ¼ 0. It is clear, from Eqs. (29e) and
(29f), that the condition (1) can be realized by making O5 ¼ O6 ¼ o. Further, if the body 2 is designed in such
a way that O1 ¼ O5 ¼ O6 ¼ o, then the displacements dx, fy, and fz will not appear in response at o. The
other design conditions are self-explanatory.

The design rules for the elimination of each translational displacement are enumerated in Table 1. The
design rule to eliminate any two or three translational displacements can be obtained by simultaneously
applying the corresponding rules. For example, if both dx and dy are to be eliminated, then we may choose one

condition of d ¼ C2C1

���!� �
from the first column of Table 1. If the condition of dx ¼ dy ¼ 0 is chosen for any

reason, then the final design rule will be DXY \ ðAÞ \ ðBÞ from Table 1.

4. Design examples

In this section, a spatial 3dof and a planar 2dof design cases are examined. The former illustrates the design
method presented in the previous section, while the latter is used for a comparative study of vibration
absorbers.

4.1. 3dof vibration absorber

A numerical example is used to illustrate the design method. In this example, rigid body 1 is placed on the
elastic support whose stiffness matrix is arbitrarily given as the following:

K1 ¼ 108 �

0:3715 0:1237 �0:1212 �0:4836 �1:0686 �0:8029

0:1237 0:1755 �0:0574 �0:2342 �0:2774 �0:0557

�0:1212 �0:0574 0:3900 0:4227 0:7864 0:7609

�0:4836 �0:2342 0:4227 1:1028 1:4286 1:3264

�1:0686 �0:2774 0:7864 1:4286 4:0424 3:0908

�0:8029 �0:0557 0:7609 1:3264 3:0908 2:9682

2
666666664

3
777777775
. (30)
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Table 2

Mass properties of body 1

m 13.338kg

Ixx 5.528� 10�2 kgm

Iyy 3.314� 10�2 kgm2

Izz 7.849� 10�2 kgm2

Fig. 3. Frequency responses of body 1: (a) translation in the x-axis (solid), y-axis (dotted), z-axis (dashed), (b) rotation on the x-axis

(solid), y-axis (dotted), z-axis (dashed).
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The mass properties of body 1 are listed in Table 2. When the coordinate axes are chosen to be coincident
with the principal axes of inertia of body 1, the mass matrix of body 1 at its mass center is given by

M1 ¼ diag 13:338 13:338 13:338 0:05528 0:03314 0:07849
� �

. (31)

The eigenvalue solution of the system with K1 and M1 given by Eqs. (30) and (31) produces the natural
frequencies, 160.1, 558.2, 1,338.8, 22,270, 32,588, and 128,138 rad/s. Assuming that the harmonic excitation

wrench ŵ ¼ 100 100 200 55 49 98
� �T

is applied on body 1, the frequency response of body 1 are

plotted in Fig. 3. In this figure, the first (at 160.1 rad/s), the second (at 558.2 rad/s), and the third (at 1338.8
rad/s) peaks are undesirable and will be reduced by use of an mdof vibration absorber. It is noted that the
magnitude of the first peak is more influenced by dx than any other displacements. Likewise, dy at the second
peak and dz at the third peak are more dominant than any other displacements. This implies that first, second,
and third peak can be reduced most efficiently by eliminating translational displacement dx, dy, and dz,
respectively, at the corresponding frequencies.

Since three translational displacements are to be eliminated, respectively, at three different frequencies of
the resonant peaks, d has to have at least two zero elements and we apply the design rule DXY \ ðAÞ \
ðBÞ \ ðCÞ from Table 1. For the elimination of dx at the first peak, O1 and O5 are tuned to the frequency of the
first peak. Likewise, O2 and O4 are tuned to that of the second peak and O3 is tuned to that of the third peak.
The choice of the last undetermined suppression frequency O6 is free. Here, we make O6 equal to the frequency
of the first peak.

In this example, four sets of OTS are used as shown in Fig. 4 and the position vectors to the coincident
points of each set of OTS which satisfy Eqs. (7) and (8) are arranged on a plane (ci ¼ 0) symmetrically.
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Fig. 4. Position vectors to each of supporting OTS of an mdof vibration absorber.

Table 3

Design values determined in example 1

m 1.330kg

Ixx 1.400� 10�2 kgm2

Iyy 1.870� 10�2 kgm2

Izz 0.5684� 10�2 kgm2

kx 8527N/m

ky 1036� 102N/m

kz 5960� 102N/m

a 1.420� 10�2m

b 4.278� 10�2m
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The stiffness matrix of body 2 is given by

K2C2
¼ diag 4kx 4ky 4kz 4kzb2 4kza

2 4 kya2 þ kxb2
� �� �

. (32)

These diagonal constants of K2C2
are substituted into Eq. (16) to get

O1 ¼

ffiffiffiffiffiffiffiffi
4kx

m

r
¼ 160:1; O2 ¼

ffiffiffiffiffiffiffi
4ky

m

r
¼ 558:2; O3 ¼

ffiffiffiffiffiffiffi
4kz

m

r
¼ 1338:8,

O4 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
4b2kz

Ixx

s
¼ 558:2; O5 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
4a2kz

Iyy

s
¼ 160:1; O6 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2ky þ 4b2kx

Izz

s
¼ 160:1. ð33Þ

In Eq. (33), a designer can now choose three spring constants (kx, ky, and kz), the positions of the coincident
points (a and b), mass (m), and three moment of inertias (Ixx, Iyy, and Izz). Table 3 shows the design values of
the parameters chosen in this example.

The performance of the designed mdof vibration absorber is verified via modal analysis. Using the design
values in Table 3, the mass and stiffness matrix of body 2 are computed as follows:

M2C2
¼ diag 1:330 1:330 1:330 0:01400 0:01870 0:005684

� �
,

K2C2
¼ 103 � diag 34:11 414:4 2384 4:362 0:4796 0:1458

� �
. ð34Þ

Since the design rule DXY \ ðAÞ \ ðBÞ \ ðCÞ is applied, the x- and y-directional element of d should be zeros
and the mass center of body 2 (the absorber) is placed 0.1m high over that of body 1, i.e.

d � C2C1

���!
¼ 0 0 �0:1
� �T

. Now, using Eq. (22), these mass and stiffness matrices are transformed to the
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mass center of body 1 to get

M2 ¼ ET
C2C1

M2C2
EC2C1

¼

1:330 0 0 0 0:1330 0

0 1:330 0 �0:1330 0 0

0 0 1:330 0 0 0

0 �0:1330 0 0:02730 0 0

0:1330 0 0 0 0:03200 0

0 0 0 0 0 0:005684

2
666666666664

3
777777777775
,

K2 ¼ ET
C2C1

K2C2
EC2C1

¼ 103 �

34:11 0 0 0 3:411 0

0 414:4 0 �41:44 0 0

0 0 2384 0 0 0

0 �41:44 0 8:506 0 0

3:411 0 0 0 0:8207 0

0 0 0 0 0 0:1458

2
666666666664

3
777777777775
. ð35Þ

The modal analysis is performed with the mass and stiffness matrices of body 1 and body 2. The global mass
and stiffness matrices are given by

M̄ ¼
M1 0

0 M2

" #
; K̄ ¼

K1 þ K2 �K2

�K2 K2

" #
. (36)

The 12 mode vectors calculated from the matrices in Eq. (36) can be expressed as

W ¼
U1

1 . . . U1
12

U2
1 . . . U2

12

" #
, (37)

where the superscript and subscript denote the number of the rigid body and the number of the mode,

respectively. The externally applied wrench ŵ ¼ fT mT
� �T

can also be expressed as ŵ ¼ f sTf sTO

h iT
¼ f ŝf

where f is the magnitude of the force f while sf is the unit direction vector along the line of action. Then, the
forced responses of the system can be computed as

1

f

X̂1

X̂2

" #
¼
X12
r¼1

U1
r

U2
r

" #T
ŝf

0

� 
U1

r

U2
r

" #

k̄r � o2m̄r

, (38)

where k̄r and m̄r are rth diagonal elements of WTK̄W and WTM̄W, respectively.
In this example, the damping of a system is regarded as being proportional to stiffness. The proportional

damping matrix is given by

C̄ ¼
b
100

� 	
K̄, (39)

where b is the proportional percent damping ratio and is 0.1 in this example. The proportionally damped
responses can be determined by

1

f

X̂1

X̂2

" #
¼
X12
r¼1

U1
r

U2
r

" #T
ŝf

0

� 
U1

r

U2
r

" #

k̄r þ joc̄r � o2m̄r

, (40)
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Fig. 5. Frequency responses of body 1 without vibration absorber (dotted), with vibration absorber (dashed), with damped vibration

absorber (solid line): (a) |dx/f|, (b) |dy/f|, (c) |dz/f|, (d) |fx/f|, (e) |fy/f|, (f) |fz/f|.
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where c̄r is the rth diagonal element of WTC̄W. Fig. 5 shows three resonance peaks in every translational and
rotational displacement. Attaching the mdof vibration absorber to body 1, the original resonant peak is
disappeared and two new adjacent peaks are emerged. This is the same result as the single dof vibration
absorber exhibits. When a 0.1% proportional damping is applied, the peaks are disappeared.
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4.2. Planar 2dof vibration absorber: a comparative study

One possible method of designing an mdof vibration absorber is to utilize the optimization technique
suggested by Zuo and Nayfeh [3]. Fig. 6 shows a 2dof system used for a comparative study of planar absorber
designs. In Ref. [3], the mass properties and location of the absorber and the positions of the springs are
specified as shown in Fig. 6(a). The mass and stiffness matrices of body 1 are given by

M1 ¼

5 0 0

0 5 0

0 0 0:1

2
64

3
75; K1 ¼

0 0 0

0 130; 000 3500

0 3500 6325

2
64

3
75. (41)

This design example involves reducing the first peak at 159.2 rad/s and the second one at 252.8 rad/s
appeared in the response of body 1 as shown in Fig. 7. The stiffness and damping values of a vibration
absorber are determined by means of the minimax optimization algorithm as k1 ¼ 6038.93, k2 ¼ 2679.96N/m,
cd1 ¼ 11.74, and cd2 ¼ 5.94N s/m. The graphs of the response of body 1 with the vibration absorber designed
through optimization are plotted by dash–dot lines in Fig. 7.
Fig. 6. Planar vibrating systems with 2dof vibration absorbers: (a) Ref. [3], (b) present work.

Fig. 7. Bode plots of transmission from ground vertical input to (a) translational displacement dy, (b) rotational displacement fz of rigid

body 1 without vibration absorber (dotted), with vibration absorber designed by present method (solid), with vibration absorber designed

by optimization (dash–dot).
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Table 4

Design values determined in example 2

m 0.25 kg

Izz 1.22� 10�2 kgm2

ky 3169.3N/m

a 0.35m

S.J. Jang, Y.J. Choi / Journal of Sound and Vibration 303 (2007) 343–356356
In a geometrical design process, two peaks of original system can be reduced by eliminating dy and fz. For
the elimination of dy, we apply the design rule DX \ ðBÞ from Table 1. A vibration absorber is installed just
over the mass center of body 1. Two sets of OTS are placed symmetrically at the same distance a from the
mass center C2 in x-direction so that Eqs. (7) and (8) can be satisfied. It is noted here that a planar OTS for this
design has only ky, i.e., kx ¼ 0 as shown in Fig. 6(b). The stiffness matrix of body 2 (an absorber) is given by

K2C2
¼ diag 0 2ky 2a2ky

� �
. (42)

The diagonal elements in Eq. (42) are substituted into Eq. (16) to get the following relations:

O1 ¼ 0; O2 ¼

ffiffiffiffiffiffiffi
2ky

m

r
¼ 159:2; O6 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2a2ky

Izz

s
¼ 252:8. (43)

In Eq. (43), O2 is tuned to the frequency of the first peak for the elimination of dy at the first peak. In the
same manner, O6 is tuned to that of second peak. The design variables determined for the vibration absorber
are listed in Table 4. Using the same damping values as those found in the optimization, the performance of
the geometrically designed vibration absorber is simulated. The performances of two different designs are
compared in Fig. 7 where the geometrically designed one shows a better performance in the rotational
response.

5. Conclusion

We presented a new geometrical design method of an mdof vibration absorber for reduction of multiple
modes of vibration, which does not utilize optimization technique. The design method involves the technique
to decouple the dynamic equation of a rigid body supported by many sets of OTS. From the decoupled
dynamic equation, we obtained the design rules for an mdof vibration absorber, which can be realized by
adjusting the location of the absorber and suppression frequencies. Two numerical simulations of the
proposed method were presented to show that a single mdof vibration absorber can successfully reduce the
undesired multiple modes of an oscillating system.
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